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We examine ground-state properties of the spin-1/2 easy-axis Heisenberg model on the Shastry-Sutherland
lattice with ferromagnetic transverse spin exchange using quantum Monte Carlo and degenerate perturbation
theory. For vanishing transverse exchange, the model reduces to an antiferromagnetic Ising model that, besides
Néel order, harbors regions of extensive ground-state degeneracy. In the quantum regime, we find a dimerized
phase of triplet states separated from the Néel ordered phase by a superfluid. The quantum phase transitions
between these phases are characterized. The magnetization process shows a magnetization plateau at 1/3 of the
saturation value, which persists down to the Ising limit, and a further plateau at 1/2 only in the quantum
regime. For both plateaus, we determine the crystalline patterns of the localized triplet excitations. No further
plateaus or supersolid phases are found in this model.
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I. INTRODUCTION

Quantum magnets exhibit a wealth of interesting phenom-
ena, in particular on low-dimensional frustrated lattices,
where both enhanced quantum fluctuations and geometric
frustration can destroy semiclassical magnetic order. Indeed,
various compounds have been characterized to provide real-
izations of the above paradigm. Recent examples include the
valence-bond solids found in �C2H5��CH3�3P�Pd�dmit�2�2
�Ref. 1� and ZnxCu4−x�OD�6Cl2.2 Another material that has
been intensively studied is SrCu2�BO3�2 �we refer to Ref. 3
for a detailed review of the various experimental and theo-
retical explorations on this system�. This compound is well
described by the dimer-singlet ground state proven exactly
previously by Shastry and Sutherland4 to exist in the spin-1/2
Heisenberg model on the orthogonal dimer lattice, as shown
in Fig. 1. Recently, different results on the magnetization
process of SrCu2�BO3�2 have been presented. In particular,
magnetization plateaus at 1/5, 1/6, 1/7, 1/9, and 2/9 of the
saturated magnetization have been reported,5 in addition to
the previously established plateaus at 1/8, 1/4, and 1/3. While
the existence of some of the reported plateaus is at the mo-
ment controversial,6 recent B11 NMR data7 and magnetic
torque measurements6 provide evidence in favor of a persis-
tent crystalline structure of magnetic excitations also above
the 1/8 plateau. The presence of intradimer Dzyaloshinskii-
Moriya interactions in SrCu2�BO3�2 however calls for a more
complex scenario than a direct interpretation in terms of su-
persolidity of triplet excitations in this regime.6

As another realization of the Shastry-Sutherland geometry
the rare-earth tetraborid TmB4 �Refs. 8 and 9� has recently
been studied in finite magnetic fields. In contrast to
SrCu2�BO3�2, this metallic compound exhibits stable long-
range antiferromagnetic order in zero field below about 9.8
K. Since full saturation can be obtained for magnetic fields
parallel to the c axis above 5 T, TmB4 allows for a complete
scan of its magnetization process. For this compound mag-
netization plateaus have been observed, e.g., at fractions 1/2,
1/7, 1/8, and 1/9 of magnetic saturation. Despite the metallic
nature of TmB4, its magnetism has been suggested to realize
an easy-axis anisotropic version of the Shastry-Sutherland

model close to the Ising limit with similar intradimer and
interdimer coupling strengths.9

In light of the progress in realizing novel quantum phases
in frustrated quantum magnets, it is important to explore in
detail the interplay between geometric frustration and quan-
tum fluctuations in such systems based on effective spin
models. In many aspects, numerical studies have become
especially important as an unbiased approach to quantum
magnetism. However, numerical studies of even simple mod-
els of frustrated spin systems suffer from severe restrictions
on the finite sizes accessible to current simulation tech-
niques. In particular, quantum Monte Carlo �QMC� simula-
tions are tampered by a notorious sign problem10 due to odd-
length spin-exchange paths appearing on nonbipartite
lattices. This usually restricts unbiased numerical studies to
the small lattices accessible to exact numerical diagonaliza-
tion. Noteworthy in this respect are however recent studies
employing the density-matrix renormalization-group algo-
rithm on the triangular and kagome lattice Heisenberg
models.11,12

Here, we employ a different approach in order to explore
the interplay between quantum fluctuations and frustration
by studying a model of quantum magnetism in a parameter
regime, where geometric frustration is restricted to the clas-
sical sector and does not lead to QMC sign problems. This
allows us to employ large-scale QMC simulations to study
quantum effects on a frustrated spin system. In particular, we
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J

FIG. 1. The orthogonal dimer lattice of the Shastry-Sutherland
model with spin-1/2 degrees of freedom on the square lattice verti-
ces, and intradimer coupling J� �solid lines� and nearest-neighbor,
interdimer coupling J �dashed lines�.
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study the ground-state properties of the spin-1/2 easy-axis
Heisenberg model on the orthogonal dimer lattice considered
by Shastry and Sutherland.4 Namely, we consider the XXZ
Hamiltonian

H = J�
�i,j�

�− ��Si
xSj

x + Si
ySj

y� + Si
zSj

z�

+ J� �
��i,j��

�− ��Si
xSj

x + Si
ySj

y� + Si
zSj

z� , �1�

a variant of the model considered in Ref. 4 with ferromag-
netic transverse exchange ���0� and antiferromagnetic
Ising exchange interactions J ,J��0. Here, Si= �Si

x ,Si
y ,Si

z� de-
notes a spin-1/2 degree of freedom on site i of the square
lattice, and the first sum extends over all nearest-neighbor
bonds. The second sum runs over a staggered subset of the
next-nearest-neighbor bonds, as indicated in Fig. 1.

The model in Eq. �1� maintains the frustrated nature of the
antiferromagnetic Ising interactions and introduces ferro-
magnetic spin-exchange terms. Employing the well-known
mapping between spin-1/2 degrees of freedom and hard-core
bosons, the model can be mapped onto an extended bosonic
Hubbard model of hard-core bosons hopping along the bonds
of the Shastry-Sutherland lattice and experiencing repulsive
interactions proportional to the strength of the Ising ex-
change. Recently, similar hard-core boson models have been
studied on different lattice geometries and were found to
exhibit interesting order-by-disorder phenomena when quan-
tum fluctuations lift an extensive ground-state degeneracy
from the Ising limit �=0, with different quantum phases
emerging. Examples include a supersolid phase on the trian-
gular lattice,13–16 valence-bond solids17,18 and a Z2 spin
liquid19–21 on the kagome lattice, and a U�1� liquid on the
pyrochlore lattice.22 In the limit of dominating kinetic terms,
such models stabilize a superfluid phase on both bipartite and
nonbipartite lattices. In spin language, the superfluid corre-
sponds to a transverse ferromagnetic spin alignment driven
by the ferromagnetic nature of the transverse spin exchange.
For the remainder of the paper, we prefer using the spin
language but occasionally find it convenient to also employ
the bosonic notation.

As reviewed in Sec. II, the antiferromagnetic Ising model
on the Shastry-Sutherland lattice exhibits regions of exten-
sive ground-state degeneracy similar to the Ising model on
the triangular and kagome lattices. Motivated by the above-
mentioned studies on these frustrated geometries, we assess
here the effects of quantum fluctuations on the classical de-
generate ground states on the Shastry-Sutherland lattice and
explore the phase diagram of the full quantum model. We
find in this system a dimer triplet state, discussed in detail
below, to emerge out of the classical degenerate region. In
addition, the system shows a Néel ordered phase and a su-
perfluid regime. We study the quantum phase transitions be-
tween these different phases and consider the effects of a
magnetic field. We do not obtain indications for supersolidity
in this model but find that quantum effects lead to the stabi-
lization of a magnetization plateau at 1/2 of the full satura-
tion that does not persist down to the Ising limit. This is in
contrast to the case of, e.g., the triangular and kagome lat-

tices, where all plateaus found in the quantum regime persist
down to the Ising limit, where they have largest extension.

The remainder of this paper is organized as follows. In
Sec. II, we review the properties of the antiferromagnetic
Ising model on the Shastry-Sutherland lattice. Then, we
present in Sec. III our numerical results on the phase diagram
of the model introduced above. In order to explain in a
simple picture the emergence of the dimer triplet phase, we
employ degenerate perturbation theory around the Ising
limit, which will be discussed in Sec. IV. In Sec. V, we ana-
lyze the properties of the system in finite magnetic fields,
discuss the appearing magnetization plateaus, and scan for
supersolid phases. Finally, we conclude in Sec. VI by relat-
ing our numerical finding to the properties of the isotropic
Heisenberg antiferromagnet ��=−1� on the Shastry-
Sutherland lattice, and we discuss connections to recent stud-
ies on its magnetization process. We also comment on a re-
cent work on the compound TmB4, suggested to realize the
easy-axis antiferromagnetic Shastry-Sutherland model close
to the Ising limit �−1���0�.9

II. ISING LIMIT

Before exploring in detail the phase diagram of the quan-
tum spin model introduced above, it is convenient to review
the properties of the Ising limit, �=0, discussed in Ref. 4. In
the Ising limit, the model in Eq. �1� stabilizes an antiferro-
magnetic Néel phase for sufficiently weak J� up to J� /J�2.
For J��2J the classical system has a macroscopically de-
generate ground-state manifold with an extensive ground-
state entropy of S= �ln�2� /2�kBN=0.347kBN, from all con-
figurations that cover each of the J� dimer bonds with a pair
of opposite spins. Here, N denotes the number of spins. Ex-
actly for J�=2J, the degeneracy of the ground-state manifold
is further enlarged, as additional low-energy configurations
proliferate. Shastry and Sutherland4 proved a lower bound
S�0.4812kBN on the ground-state entropy at J�=2J via
mapping the model onto a ten-vertex model and using braid-
ing techniques. A simple estimate of the ground-state degen-
eracy can be obtained by employing the argument from
Pauling’s23 estimate of the residual entropy of ice. For this
purpose, consider one of the filled plaquettes on the Shastry-
Sutherland lattice. While for J��2J the eight configurations
shown in Fig. 2�a� provide minimal contributions of this
plaquette to the total energy, for J�=2J the two configura-
tions shown in Fig. 2�b� also lead to a minimal energy con-
tribution. Given that out of the 16 possible configurations of
the four spins forming the plaquette, these ten configurations

(a) (b)

FIG. 2. �a� Possible spin configurations in the Ising limit on a
nonvoid plaquette for J��2J. �b� Additional configurations allowed
on a nonvoid plaquette at J�=2J. Full �open� circles denote spin-up
�down� states.
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are thus feasible, we obtain an estimate for the ground-state
entropy

S � kB ln	2N
10

16
�N/2� = 0.458kBN , �2�

to be compared to the above bound by Shastry and Suther-
land. We note that for J��2J the Pauling estimate S
=kB ln�2N/2� recovers the exact result.

Besides the Ising limit, Shastry and Sutherland4 consid-
ered the effects of antiferromagnetic transverse spin-
exchange terms ���0 in our notation� and proved that the
system possesses an exact dimer-singlet product eigenstate,
which at least for J��2J becomes the system’s ground state.
Later studies by various groups considered the full quantum
phase diagram of this model, which up to date is not conclu-
sively established �cf. Ref. 3 for a review of the various
theoretical and numerical proposals�, even though numerical
evidence has been put forward, that the SU�2� symmetric
model ��=−1� features indeed three phases: �i� a low-J� an-
tiferromagnetically ordered Néel phase, �ii� the large-J�
dimer-singlet phase, and �iii� an intermediate valence-bond
crystal �VBC� phase, which breaks the lattice symmetry by
forming resonating plaquette singlet states on one of the sub-
sets of the void plaquettes of the Shastry-Sutherland lattice.24

This VBC phase has a twofold-degenerate ground state and a
finite spin excitation gap. For the remainder of this work, we
study the quantum model in the region ��0, where large-
scale QMC simulations are possible, in contrast to the previ-
ously studied case of ��0. Furthermore, this model relates
directly to a model of hard-core bosons, as mentioned in Sec.
I.

III. QUANTUM PHASE DIAGRAM

In this section, we present our numerical results on the
phase diagram of the model in Eq. �1�. These results are
based on QMC simulations of finite systems with up to N
=36�36 lattice sites, using period boundary conditions. In
the simulations, we scaled the inverse temperature as �
=1 /T=8L /�J in order to access ground-state properties.
Here, L denotes the linear system size. The QMC simulations
were performed employing a generalized directed-loop
update25,26 in the stochastic series-expansion �SSE�
algorithm.27 For the results obtained on the larger lattices, in
particular in finite magnetic fields, we employed a decou-
pling of the Hamiltonian in plaquette terms instead of the
more conventional bond decoupling for the SSE formulation.

In Fig. 3, we present the ground-state phase diagram re-
sulting from our calculations. We find that the extension of
the antiferromagnetically ordered Néel phase shrinks essen-
tially linearly upon increasing � from 0 up to the Heisenberg
point at �� ,J� /J�= �1,0� �for J�=0, the model reduces to a
spin model on the bipartite square lattice and the sign of �
can be inverted by a unitary transformation, thus relating the
point �� ,J� /J�= �1,0� to the isotropic Heisenberg model at
�� ,J� /J�= �−1,0��. In hard-core bosonic language, the Néel
phase corresponds to a checkerboard solid with alternating
occupation of the lattice sites. In our QMC simulations, we

determine the corresponding structure factor SAF for antifer-
romagnetic order,

SAF =
1

N
�
i,j

	i	 j�Si
zSj

z� , �3�

where 	i= 
1, depending on the sublattice to which lattice
site i belongs. Néel order is present if in the thermodynamic
limit SAF /N scales to a finite value. For dominant transverse
exchange, ��1, the model reduces to a ferromagnetic XY
model on the Shastry-Sutherland lattice, which in bosonic
language relates to a nonfrustrated tight-binding hopping
model. Hence, the system is expected to exhibit a bosonic
superfluid phase for large values of ��0, which in spin
language relates to a ferromagnetic ordering within the XY
plane. Such a phase is characterized by a finite value of the
superfluid density, or spin stiffness, which in the QMC simu-
lations can be obtained from measuring the spin winding
number fluctuation28 �W2� as

�S =
T

�J
�W2� . �4�

As an example, we show in Fig. 4 the behavior of �S for
different system sizes as a function of J� /J for fixed �
=1 /2. A region with finite spin stiffness is found for 0.9
J� /J2.5. The strong discontinuity of �S at J� /J=0.9 in-
dicates that the quantum phase transition between the Néel
ordered phase and the superfluid is strongly first order. Such
behavior is also seen by monitoring the antiferromagnetic
structure factor SAF upon crossing the phase boundary, as
shown in Fig. 5, again for �=1 /2. Combining the results for
SAF and �S, we obtain no indication for an intermediate re-
gion exhibiting both finite superfluidity and diagonal long-
range order as inside a supersolid phase, as expected from

0 0.2 0.4 0.6 0.8 1 1.2 1.4
∆
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J’
/J superfluid
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FIG. 3. �Color online� Ground-state phase diagram of the spin-
1/2 XXZ model on the Shastry-Sutherland lattice with ferromagnetic
transverse spin exchange. The dotted �solid� line denotes a first-
order �continuous� quantum phase transition. Uncertainties on the
indicated phase boundaries are below the symbol size. The dashed
line is a guide for the eyes indicating a line of constant J� /J=2. The
dashed-dotted line gives the estimated phase boundary of the dimer
triplet phase within perturbation theory around the point �J� /J ,��
= �2,0�, as discussed in Sec. IV.
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the commensurate half filling of the lattice. For dominant J�
�e.g., J� /J�2.5 at �=1 /2�, both SAF and �S eventually van-
ish. We explicitly verified that inside this regime the model
does not exhibit long-ranged correlations in the longitudinal
or the transverse spin-spin correlation function. In addition,
also the bond-order-wave structure factors do not exhibit
long-ranged order in the spin-exchange correlation function
�corresponding to kinetic-energy correlations in the bosonic
model�.

Since the parameter region with J��2J approaches the
degenerate region of the Ising limit for �→0, quantum ef-
fects indeed select a unique phase from this degenerate
ground-state manifold. In particular, for small values of �
�1, the ground state in this large-J� regime can be obtained
using degenerate perturbation theory around the Ising limit
discussed in detail in Sec. IV. Within first-order perturbation
theory in � one then finds that for J��2J, quantum fluctua-
tions select the following dimerized state of localized Stot

z

=0 triplet states on each dimer:

�D� = �
d

1
�2

�↑↓� + ↓↑��d. �5�

Here, the direct product extends over all J� dimer bonds on
the lattice. Obviously, this symmetric linear local combina-
tion results from the ferromagnetic nature of the transverse
spin exchange ���0� considered here. For ��0, one in-
stead recovered the exact dimer-singlet state found by
Shastry and Sutherland.4 In contrast to the dimer-singlet
state, however, the above state �D� is not an eigenstate of
the Hamiltonian for finite values of J. As discussed in Secs.
IV, processes in higher-order perturbation theory lead to local
correlations between the dominant resonances on the dimers.
Hence, the ground state in the large-J� region of the quantum
phase diagram does not take the above direct product form
but approaches it for J /J�→�. From the ground-state en-
ergy, we still find that the state �D� provides an appropriate
variational state for the true ground state in the large-J� re-
gime. This can be seen even at �=1 /2, i.e., significantly
away from the Ising limit, from a comparison between the
system ground-state energy E and the variational energy of
�D�,

ED = ��DH�D� = −
NJ�

8
�1 + 2�� , �6�

as shown in Fig. 6. Due to the dominant formation of Stot
z

=0 triplet states on the dimer bonds, we denote this magneti-
cally disordered phase as a dimer triplet phase.

Since no spatial symmetry is broken in the dimer triplet
phase, we expect the quantum phase transition from the su-
perfluid with broken U�1� symmetry to the dimer triplet
phase to be continuous and to belong in the universality class
of the three-dimensional �3D� O�2� model with a dynamical
critical exponent z=1. In order to study the nature of this
quantum phase transition in the QMC simulations, we
scanned the transition region at fixed values of either � or
J� /J, varying the other parameter through the phase bound-
ary. Denoting the varied parameter by X, at a continuous
quantum phase transition the spin stiffness scales as
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FIG. 4. �Color online� Spin stiffness �S at fixed �=1 /2 as a
function of J� /J for different system sizes.
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FIG. 5. �Color online� Antiferromagnetic structure factor across
the phase boundary between the Néel ordered phase and the super-
fluid regime at fixed �=1 /2 as a function of J� /J for different
system sizes.
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FIG. 6. �Color online� Comparison of the ground-state energy E
as a function of J� /J for �=1 /2 and the variational energy of the
dimerized state of localized Stot

z =0 triplet states, ED= ��DH�D�.

ZI YANG MENG AND STEFAN WESSEL PHYSICAL REVIEW B 78, 224416 �2008�

224416-4



�S�X,L� = L−zf�tXL1/�,�/Lz� �7�

with a scaling function f and the correlation length exponent
�. Here,

tX =
X − Xc

Xc
�8�

denotes the relative distance away from the critical point at
X=Xc. From the above scaling relation, it follows that Xc can

be determined as the crossing point of finite-size data for the
rescaled spin stiffness Lz�S. Furthermore, with appropriate
values of the critical exponents z and �, the scaling function
f�· ,A� is then obtained by plotting Lz�S vs tXL1/� for a fixed
value of � /Lz=A. As an example, we consider a scan in X
=J� /J at a fixed value of �=1 /2, for which the finite-size
data of �S is shown in Fig. 7�a�. For z=1, we obtain Xc
=2.46�2� from a clear crossing point in Fig. 7�b�, and a clear
data collapse within a finite critical region, taking �
=0.6723 for the 3D O�2� model,29 as shown in Fig. 7�c�.

Proceeding this way for other values of �, we eventually
obtained the phase boundary shown in Fig. 3. From this
analysis, we find that at low values of �0.225, the dimer
triplet phase extends below the line J� /J=2, which is indi-
cated by the dashed line in Fig. 3. In order to illustrate this
explicitly, we show in the left panels of Fig. 8 the results of
the finite-size scaling analysis at �=1 /6, where the transition
point is located at J� /J=1.928�5��2. As a crosscheck, the
right panel of Fig. 8 shows the data of the finite-size scaling
analysis at fixed J� /J=1.928, where the transition is indeed
observed at �=1 /6. Similarly, when varying � at fixed
J� /J=2 a transition point between the dimer triplet phase and
the superfluid regime is found at �=0.225�1�, as extracted
from Fig. 9. These results suggest that �i� the superfluid re-
gion separating the Néel ordered phase and the dimer triplet
phase persists down to the Ising limit, �ii� the first-order tran-
sition line and the second-order transition line meet at a finite
value of �, or �iii� an additional phase appears near J�=2J
for even smaller values of ��0.1.

Such an additional phase might be expected to be selected
by quantum effects from the state of enlarged degeneracy of
the Ising model at J�=2J for finite �. The QMC simulations
could not be extended to significantly smaller values of �
due to a reduced efficiency in parameter regions dominated
by the frustrated diagonal part of the Hamiltonian. However,
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FIG. 7. �Color online� Spin stiffness �S at fixed �=1 /2 as a
function of J� /J �a� for different system sizes and �b� rescaled with
linear system size L, with J� /J=2.46 marked by the dashed line.
Part �c� shows the data collapse expected from a finite-size scaling
analysis for the 3D O�2� universality class.
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FIG. 8. �Color online� Left panel: spin stiffness �S at fixed �
=1 /6 as a function of J� /J �a� for different system sizes and �b�
rescaled with linear system size L, with J� /J=1.928 marked by the
dashed line. Part �c� shows the data collapse for the 3D O�2� uni-
versality class. Right panel: spin stiffness �S at fixed J� /J=1.928 as
a function of � �d� for different system sizes and �e� rescaled with
linear system size L, with �=1 /6 marked by the dashed line. Part
�f� shows the data collapse for the 3D O�2� universality class.
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FIG. 9. �Color online� Spin stiffness �S at fixed J� /J=2 as a
function of � �a� for different system sizes and �b� rescaled with
linear system size L, with �=0.225 marked by the dashed line. Part
�c� shows the data collapse expected from a finite-size scaling
analysis for the 3D O�2� universality class.
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as discussed in Sec. IV, degenerate perturbation theory in �
indicates that at J�=2J the dominant effect of a finite � is to
effectively drive the system away from J�=2J toward the
region J��2J. This leads us to exclude option �iii� from the
above list. Scenario �ii� would imply a direct first-order tran-
sition between the Néel ordered phase and the dimer triplet
state for sufficiently low values of ��0, whereas within
scenario �i� the superfluid phase would always separate the
two phases.

IV. PERTURBATION THEORY

In order to study more closely the emergence of the dimer
triplet phase from the Ising limit upon introducing transverse
exchange interactions, we employed degenerate perturbation
theory starting from the degenerate ground-state manifold in
the Ising limit �=0. First, we consider the region J��2J,
where the degenerate ground-state manifold is spanned by
independently placing two opposite spins on each J� dimer,
as discussed in Sec. II.

For each such J�-dimer d, we denote these two lowest-
energy states as

 ⇓ �d = ↑↓�d,

 ⇑ �d = ↓↑�d, �9�

which form an effective spin-1/2 degree of freedom on the
dimer d. We separate the full Hilbert space of the system into
the model space M spanned by these ground-state configu-
rations and the orthogonal space O. A basis of M is given by
the orthonormal states

�a� = �
d

�a�d, with �a�d � � ⇓ �d,  ⇑ �d� . �10�

The orthogonal space O is spanned by all states of the Ising
model that do not belong to this set. We denote these ortho-
normal basis states by �b�, for which at least one dimer d
has both spins equal, i.e., ↑↑�d or ↓↓�d. The Hamiltonian of
Eq. �1� is similarly split into the model Hamiltonian H0 and
a perturbation part H1��,

H0 = J�
�i,j�

Si
zSj

z + J� �
��i,j��

Si
zSj

z,

H1 = J�
�i,j�

�− ��Si
xSj

x + Si
ySj

y�� + J� �
��i,j��

�− ��Si
xSj

x + Si
ySj

y�� ,

�11�

where H0 is diagonal in the basis of M and O introduced
above. The effective Hamiltonian Heff that describes the ef-

fective dynamics induced by H1 within the model space M is
given by degenerate perturbation theory up to third order in
� as30

Heff = PH0P + PH1P

1st order

+ PH1RH1P

2nd order

+ PH1RH1RH1P − PH1RRH1PH1P

3rd order

+ O��4� , �12�

where

P = �
a

�a���a �13�

is the projection operator onto the model space in terms of
the above-constructed basis states �a�, and

R = �
b

�b���b
E0 − E0

b �14�

is the resolvent operator with E0=−NJ� /8 as the degenerate
ground-state energy of H0 and E0

b= ��bH0�b� as the energy
of the basis state �b� of the orthogonal space O. We start by
considering the first-order contribution to Heff. The only pos-
sible process in this case is a single spin flip along a diagonal
bond graphically represented in Fig. 10. In terms of effective

spin operators S̃d
+, S̃d

−, and S̃d
z that act on the effective dimer

spin states ⇑ �d , ⇓ �d, the effective Hamiltonian in first-order
perturbation thus reads

FIG. 10. �Color online� Spin-exchange processes contributing to
the effective Hamiltonian Heff

�1� in first-order perturbation theory. Full
�open� circles denote spin-up �down� states.
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FIG. 11. �Color online� Two different spin-exchange processes
contributing to the effective Hamiltonian Heff

�2� in second-order per-
turbation theory. These processes mediate the formation of an Stot

z

=0 triplet state on the corresponding dimer while blocking its for-
mation on the neighboring dimers �inside ellipses�. Full �open�
circles denote spin-up �down� states. Numbers indicate the order of
the spin exchange in the processes.
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Heff
�1� = −

�J�

2 �
d

�S̃d
+ + S̃d

−� = − �J��
d

S̃d
x , �15�

corresponding to a uniform transverse magnetic field acting
on the effective dimer spins. The lowest-energy eigenstate of
Heff for ��0 is the direct product state

�D� = �
d

1
�2

� ⇑ �d +  ⇓ �d� = �
d

1
�2

�↑↓� + ↓↑��d,

referred to already as Eq. �5� in Sec. III, corresponding to the
decoupled dimer state with each dimer forming a Stot

z =0 trip-
let state. In case of an antiferromagnetic transverse exchange,
��0, the lowest-energy state of Heff is the dimer-singlet
state

�S� = �
d

1
�2

� ⇑ �d −  ⇓ �d� = �
d

1
�2

�↑↓� − ↓↑��d,

proven to be an exact eigenstate of the full Hamiltonian H
for ��0 by Shastry and Sutherland.4 However, �D� is not
an eigenstate of the full Hamiltonian, and correlations be-
tween the effective dimer spins are introduced in higher-
order perturbation theory.

In order to assess the nature of these correlations, we
consider processes occurring in second-order perturbation
theory. These involve two spin exchanges along axial bonds.
Apart from diagonal terms, the result of such processes is
again to flip the effective spin on one of the dimers, as shown
in Fig. 11. The matrix element of each process depends in
detail on the specific local spin configuration on the dimers
neighboring the dimer that undergoes the spin flip. Among
the various possibilities, one with the largest amplitude is
shown in Fig. 11�a�. In the second-order effective Hamil-
tonian Heff

�2�, this process contributes a term

2��J�2

2J − J�
S̃d

x
1

2
− S̃i

z�
1

2
− S̃j

z�
1

2
− S̃k

z�
1

2
+ S̃l

z� , �16�

which provides a further contribution to the transverse field
operator at site d, dressed by diagonal operators from the
neighboring dimers, that project out the specific configura-
tion of dimer spin states according to the configuration
shown in Fig. 11. While the transverse field in Heff

�1� acts lo-
cally on each dimer, the dressed transverse field operators

deriving from Heff
�2� lead to correlations among nearest-

neighbor dimer spins. For example, the spin-exchange pro-
cess on dimer d shown in Fig. 11�a� could not take place, as
indicated by the arrows, if dimer k was in the opposite spin
state. Instead, a different process could take place, as shown
in Fig. 11�b�, that leads to a similar term in Heff

�2� but with a
different energy denominator than in Eq. �16�. In this way,
details of the local dimer configuration enter the effective
Hamiltonian in a rather complex manner.

The explicit form of the total effective Hamiltonian up to
second order in � involves several terms containing products
of up to five effective spin operators, such as the term given
explicitly in Eq. �16�. While the ground state of this effective
Hamiltonian is not directly accessible, the general structure
of these terms indicates that it will be a dressed version of
�D�, with local interdimer correlations induced by the above
virtual spin-exchange processes. This reflects the QMC result
that the true ground state is close in energy to �D� and does
not exhibit long-ranged correlations.

The effective Hamiltonian up to second order in perturba-
tion theory does not include transverse spin-exchange terms
that would contain products of off-diagonal effective spin

operators such as S̃d
+S̃k

−+ S̃d
−S̃k

+ on two neighboring dimers d
and k. However, such terms appear in third order of the de-
generate perturbation theory, e.g., from the process shown in
Fig. 12. Similar to the transverse magnetic-field operator in
second order, the matrix elements depend on the details of
the spin configuration on the neighbors of the two dimers
that undergo an effective spin exchange. The transverse ef-
fective spin-exchange operators are thus similarly dressed by
additional projection operators. Becoming more relevant at
large values of �, we expect that such exchange terms even-
tually drive the transition from the dimer triplet phase to the
superfluid region that was observed in the QMC simulations
�cf. Fig. 3�.

We now turn to the special point J�=2J, where the ground
state in the Ising limit has an enhanced degeneracy, as dis-
cussed in Sec. II. Consider one of the J� dimer of the
Shastry-Sutherland lattice in the Ising limit �=0. For J�
=2J, this dimer can be either in one of the local configura-
tions of Fig. 2�a�, which are also allowed configurations for
J��2J, or it is in one of the local configurations shown in
Fig. 2�b�. Introducing a finite ��0 in first-order perturbation
theory, a splitting in the energy between the configurations of
Fig. 2�a� and those of Fig. 2�b� occurs since the configura-
tions of Fig. 2�b� cannot gain exchange energy by a trans-
verse spin exchange along the dominant J� bonds, in contrast
to the configurations of Fig. 2�a�. To first order in �, this
energy difference is equal to

�E = − J +
J�

2
+

�J�

2
�17�

near the point �� ,J� /J�= �0,2�. A finite �E�0 thus leads to
a partial lifting of the ground-state degeneracy, and only the
local configurations of Fig. 2�a� remain to span the low-
energy sector. The configurations of Fig. 2�b� are split off by
a finite-energy difference �E�0 from the ground-state mani-
fold. Since this energy difference remains positive for

31 2

d

k

d

k

FIG. 12. �Color online� Spin-exchange process contributing to
the effective Hamiltonian Heff

�3� in third-order perturbation theory.
This process leads to a flip of the effective spins on two neighboring
dimers �inside boxes�. As a result of this process, the effective spins
inside the boxes have been exchanged. Full �open� circles denote
spin-up �down� states. Numbers indicate the order of the spin-
exchange processes.
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�E � 0 ⇔
J�

J
�

2

1 + �
, �18�

we expect that as long as J� /J�2 / �1+�� close to
�� ,J� /J�= �0,2�, the system is driven by quantum effects
toward the same phase as for J��2J. In fact, this expectation
is in agreement with the QMC phase diagram of Fig. 3,
where we found that �i� for small ��0 at J�=2J, the system
enters the dimer triplet state as it does for J��2J and �ii� the
phase boundary of the dimer triplet phase closely follows the
limiting line J� /J=2 / �1+�� according to �E=0 for small �
�denoted by the dashed-dotted line in Fig. 3�. The above
argument was based on energy considerations on an isolated
dimer. Due to this restriction, we are not able to discern here
if the superfluid phase indeed terminates at small but finite
values of � or if it persists down to any finite value of �
�0. This would require the intradimer exchanges to be taken
into account within higher orders of perturbation theory.
However, from our analysis of the case J��2J discussed
above, we expect that also in this case the effective model
will not allow for an explicit solution, thus leaving this ques-
tion unanswered. Hence, here we do not attempt to extend on
this issue but instead move on to study the magnetization
process in the model under consideration.

V. MAGNETIZATION PROCESS

After exploring the ground-state phase diagram, we now
consider the model of Eq. �1� in the presence of a finite
magnetic field h, which couples to the spins by the standard
Zeeman term,

H → H − h�
i

Si
z. �19�

From considering a singly flipped spin with respect to the
fully polarized state, one finds that the system is fully polar-
ized for magnetic fields h beyond

hs = �2J + J�/2��1 + �� . �20�

Before discussing the magnetization process of the full
quantum model, it is again useful to consider first the Ising
limit. The authors of Ref. 9 stated that the Ising model on the
Shastry-Sutherland lattice exhibits a magnetization process
with a single plateau at m /ms=1 /2, where m denotes the
magnetization and ms denotes its saturation value, at least for
J��2J. In our notation, this 1/2 plateau should extend be-
tween 2J−J� /2�h�2J+J� /2. In particular, in the case J�
=J, well within the Néel ordered zero-field regime, this range
becomes 3 /2�h /J�5 /2. In order to check this scenario, we
performed a systematic finite-size study using classical
Monte Carlo �MC� simulations on lattices with up to 18
�18 spins in the canonical ensemble. For these simulations,
we employed a single spin-flip Metropolis algorithm and al-
lowed for a simulated annealing of the system from a large
initial temperature T�J down to the final temperature during
an initial stage of the MC equilibration. This way we were
able to obtain MC results down to T /J=0.1 for L=4, 6, and
8, T /J=0.2 for L=12, and T /J=0.4 for L=18. While for the
purpose of the current study, one can draw relevant conclu-
sions on the magnetization process from these data, it will be
interesting to obtain more refined numerical data on the mag-
netization process in the Ising limit, using extended en-
semble sampling methods, similar to the approach taken in
Ref. 31 for the square and triangular lattices. However, this
lies beyond the scope of the current study, which is directed
toward the quantum regime.

Upon presenting the MC results, we first discuss the case
J�=J considered in Ref. 9. Our MC data for the magnetiza-
tion process on different lattices are collected in Fig. 13. The
inset of Fig. 13 shows our data for a 4�4 system, which
appear to confirm the conclusion of Ref. 9. However, upon
increasing the system size, we find that different plateau
structures appear. In general, in order to allow a system to
establish a certain magnetization plateau, appropriate lattice
sizes and boundary conditions must be chosen. Otherwise,
geometric constraints could frustrate certain magnetization
patterns. In the present case, it can be seen from the numeri-
cal data that only for L that is a multiple of 3, the system
establishes a wide m /ms=1 /3 plateau, which is consistently
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FIG. 13. �Color online� Magnetization curves m /ms as functions
of h for the Ising model on the Shastry-Sutherland lattice at J�=J
for different system sizes obtained from Monte Carlo simulations.
The inset shows the results for the 4�4 and 8�8 lattices.
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FIG. 14. �Color online� Magnetization curves m /ms as functions
of h for the Ising model on the Shastry-Sutherland lattice at J�
=2.4J for different system sizes obtained from Monte Carlo
simulations.
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observed for L=6, 12, and 18. Instead, the L=4 and 8 sys-
tems cannot establish the corresponding magnetic super-
structure, and hence lead to rather different magnetization
curves with strong finite-size effects that do not represent
thermodynamic limit behavior. The magnetization curve in
Fig. 13 for L=6, taken at T /J=0.1, exhibits a magnetization
plateau at m /ms=1 /3, extending from h=J up to the satura-
tion field at h=5 /2J. The data shown for the two larger sys-
tems, for which higher temperatures had to be taken in the
MC simulations, are consistent with a thermal smothering of
the magnetization jumps out of the plateau toward m=0 and
full saturation, respectively. We conclude that for J�=J the
Ising model exhibits a single intermediate magnetization pla-
teau at m /ms=1 /3, extending from h=J up to the saturation
field at h=5 /2J. The different conclusion of Ref. 9 appears
to be due to the usage of inappropriate finite lattice sizes.
Note that all values of L considered here were even, i.e., a
plateau at m /ms=1 /2, if it would exist in this model, it
would not be frustrated by finite lattice effects. In fact, as
discussed below, we find that such a 1/2 plateau appears for
finite values of � due to quantum effects. Next, we consider
the case J�=2.4J well inside the degenerate region of J�
�2J. Below, we will compare the Ising-model result to
QMC data on the magnetization process for finite ��0 at
the same value of J� /J. The MC results for the magnetization
process in the Ising limit are shown in Fig. 14, where we
now consider linear system sizes L that are a multiple of 6.
Again, we observe a wide 1/3 magnetization plateau, which
extends from h�0.8J up to the saturation field at h=hs
=3.2J. A precise estimate of the lower boundary of the pla-
teau is not accessible from the current finite-size data, as we
could not collect data at sufficiently low temperatures on
larger systems. There appears however a finite magnetization
with a smooth increase well before the plateau is entered. It
will be interesting to explore this low m regime in more
detail using extended ensemble methods. The point that is
important for the following discussion, and which follows
also from the current MC data, is the absence again of a
magnetization plateau at m /ms=1 /2. Instead, the magnetiza-
tion exhibits a jump from the 1/3 plateau up to magnetic
saturation at h=hs.

As we show next, a plateau at m /ms=1 /2, while not ob-
tained in the Ising limit, emerges in the quantum model at
finite values of ��0. Figure 15 shows the magnetization
process for J�=2.4J and �=1 /4 from QMC simulations. We
again find a magnetization plateau at m /ms=1 /3 as well as a
plateau at m /ms=1 /2. Adding a transverse exchange to the
Ising model thus leads to a softening of the large magnetiza-
tion jump from m /ms=1 /3 to 1 in the Ising limit, and an
additional plateau region appears with m /ms=1 /2. In hard-
core bosonic language, the transverse exchange maps onto a
nonfrustrating hopping amplitude. In the current situation,
this finite boson hopping does not lead always to superfluid-
ity but drives the system into an insulating phase at filling
�=3 /4, corresponding to m /ms=1 /2 �due to particle-hole
symmetry, a similar insulating region emerges also for �
=1 /4, corresponding to m /ms=−1 /2�. Indeed, we find from
Fig. 15 that the spin stiffness �s vanishes inside both plateau
regions. It is then in order to study if the magnetic excita-
tions in both plateau phases form period crystals and what
the structures of such solid arrays would be. Long-range
crystalline ordering of magnetic excitations inside magnetic
plateau regions has previously been analyzed for the isotro-
pic spin-1/2 Heisenberg model on the Shastry-Sutherland
model5,32–38 based on different approximative schemes. The
relevant structures expected from these studies are shown in
the inset of Fig. 16 for the 1/3 �upper panel� and the 1/2
�lower panel� plateaus, respectively. They are expressed in
terms of periodic arrangements of Stot

z =1 dimer triplet states
↑↑�d, denoted by dumbbells, in a background of less polar-
ized, e.g., Stot

z =0, states on the remaining dimers. We now
assess if these crystalline patterns appear also in the current
quantum model, which represents an anisotropic version of
the Heisenberg model considered thus far.

In a QMC simulation, one can probe exactly for these
magnetic superstructures by measuring an appropriate struc-
ture factor. Hence, we analyze the ordering pattern of the
magnetic excitations by measuring the triplet excitation
structure factor
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FIG. 15. �Color online� Magnetization m /ms and spin stiffness
�S for J�=2.4J and �=1 /4 as functions of the applied magnetic
field h. Results are shown for a 24�24 lattice.
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FIG. 16. �Color online� Dimer super structure factors
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=2.4J and �=1 /4 as functions of the applied magnetic field h. The
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dumbbell denotes a fully polarized dimer. Nd=N /2 is the number of
dimers.
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S�q� =
1

Nd
�
d,k

eiq�rd−rk��PdPk� , �21�

where Pd is a projector on the Stot
z =1 dimer triplet state ↑↑�d

on dimer d. Nd=N /2 equals the number of dimers in the
finite system of N sites. The positions rd of the dimers and
the momentum space vector q are defined with respect to the
convenient coordinate system formed by the square lattice of
dimers, with the distance between the centers of two neigh-
boring dimers taken as unity. In this way, the solid order
shown in the upper panel of Fig. 16 for m /ms=1 /3 corre-
sponds to a peak in S�q��Nd at q= �2� /3,2� /3� and at q
= �� ,�� for the order shown in the lower panel of Fig. 16 for

m /ms=1 /2. The main panels of Fig. 16 show the compo-
nents of the structure factor for different system sizes, re-
spectively. We checked that no other signal in S�q� appeared,
apart from those explicitly shown. From these data we con-
clude that indeed the crystalline orders of the magnetic exci-
tations shown in Fig. 16 are stabilized within the two mag-
netization plateau regions, respectively. In order to study the
real-space distribution of the magnetization among the lattice
sites in more detail, we also measured the mean local values
of the magnetization. The obtained distributions of the local
magnetization are shown for the 1/3 and 1/2 plateaus in Figs.
17�a� and 17�b�, respectively. They agree well with the dis-
tributions reported for the isotropic Heisenberg model in the
studies mentioned above.

Upon varying h beyond these wide magnetization pla-
teaus, the magnetization undergoes discontinuous jumps, as
seen in Fig. 15, alert when entering the 1/2 plateau from
below, where such a jump appears to be not that well re-
solved. The spin stiffness �s exhibits a similar behavior, with
clear jumps upon entering the plateaus, except when entering
the 1/2 plateau from below. Apart from this case, the
superfluid-insulator transitions are thus clearly of first order.
Concerning the region below the 1/2 plateau, one might in-
stead consider the presence of a supersolid state of magnetic
excitations with both a finite superfluid density and a crys-
talline superstructure. In order to assess if supersolid behav-
ior is indeed present in this regime, we show in Fig. 18 the
finite-size scaling of both the superfluid density �s and the
relevant structure factors from the neighboring magnetiza-
tion plateaus at a magnetic field of h=2.6J inside the possi-
bly supersolid region. From the finite-size scaling we can
exclude the presence of a supersolid phase in this parameter
regime. Between the two magnetization plateaus, the system
is thus in a uniform superfluid state. Our analysis of the
magnetization process at J� /J=2.4 and �=1 /4 did not ex-
hibit the presence of any additional plateaus at lower values
of m. Indeed, at low m the magnetization curve as well as the
superfluid density appears smooth in Fig. 15. In particular,
we did not find any of the fractional magnetization plateaus
mentioned in Sec. I for the compounds SrCu2�BO3�2 and
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FIG. 17. Distribution of the local magnetization mi /ms for the
magnetization plateaus at �a� m /ms=1 /3 and �b� 1/2, represented as
indicated by the size of circles on the lattice sites. Results are
shown for a 24�24 lattice.
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sity �S and the dimer superstructure factors of the neighboring pla-
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TmB4 or those found for the isotropic spin-1/2 Heisenberg
model on the Shastry-Sutherland model in recent
studies.5,37,38 We postpone a discussion on this issue to Sec.
VI.

Finally, we present our results for the magnetization pro-
cess upon varying over a wider range of parameter space.
The results of QMC simulations similar to those discussed in
detail above are summarized in Fig. 19, which shows the
magnetic phase diagram for a generic fixed ratio of J� /J
=2.4. The figure shows both the m /ms=1 /3 magnetization
lobe that extends from the Ising limit up to �=0.32�2� and
the emergent m /ms=1 /2 lobe that extends up to a similar
value of � but shrinks upon approaching the Ising limit,
where no 1/2 plateau persists.

VI. CONCLUSIONS

We studied the ground-state phase diagram and the mag-
netization process of the spin-1/2 easy-axis XXZ model of
Eq. �1� with ferromagnetic transverse spin exchange on the
Shastry-Sutherland lattice. The model exhibits a Néel or-
dered phase for small values of J� /J and �, and a superfluid
phase for dominant �. For sufficiently large values of J� /J, a
dimerized phase with the dominant formation of Stot

z =0 trip-
let states on the J�-dimer bonds is stabilized, which connects
to the degenerate phase of the model in the Ising limit. We
would like to compare these findings to the case of the iso-
tropic Heisenberg model on the same lattice. Also in this
model there is strong evidence for an intermediate phase3

separating the Néel ordered phase from the dimer-singlet
phase. In contrast, this intermediate phase is however not a
superfluid but appears to realize a valence-bond crystal
driven by the frustrated nature of the transverse exchange
interactions in this region.24

Using classical Monte Carlo simulations to assess the
magnetization process in the Ising limit, we could exclude a
magnetization plateau9 at 1/2 of the full saturation and in-
stead found a 1/3 plateau with a magnetization jump toward
full magnetic saturation. The quantum model shows the pres-
ence of a 1/2 plateau in addition to the 1/3 plateau. This
emergence of a magnetization plateau upon adding quantum
fluctuations �via a finite �� to the Ising model reminds of
previously observed emergences of magnetization plateaus
via thermal fluctuations as, e.g., in the classical Heisenberg
model on the kagome lattice.39 While we examined the case
of a ferromagnetic transverse spin exchange, the experimen-
tal observation of a 1/2 plateau in the compounds TmB4 and

SrCu2�BO3�2 can be taken as indication that such a plateau
also emerges for antiferromagnetic transverse exchange. In-
deed, a 1/2 plateau is consistently reported also in the studies
on the magnetization process of the isotropic Heisenberg
model on the Shastry-Sutherland lattice.3

With respect to other reported magnetization plateaus
both from experiments and in recent theoretical work, we did
not obtain evidence from our quantum Monte Carlo simula-
tions that they are stabilized in the current model. In particu-
lar, the pronounced 1/6 plateau, consistently reported in re-
cent theoretical work,5,37,38 has not been found for the
parameter region we examined in our simulations �we per-
formed various scans inside the range 2�J� /J�3, down to
�=1 /7, with results similar to those presented in detail
above�, even though the proposed magnetic unit cell5,37,38 is
commensurate with the finite lattices that we employed in
our simulations. We explicitly checked that no signal in the
relevant component of S�q� at q= �� ,� /3� appears near
m /ms=1 /6 in this model. Hence, we conclude that the model
considered here exhibits magnetization plateaus at 1/2 and
1/3 of the full saturation only. Future work could explore in
more detail the magnetization process in the Ising model
inside the low-field region using extended ensemble methods
similar to the approach taken in Ref. 31. It would be inter-
esting to apply the theoretical approaches employed in Refs.
37 and 38 to the current model in order to check their pre-
dictions against the unbiased large-scale quantum Monte
Carlo results present here.

Note added in proof. Recently, Chang and Yang studied
the magnetization process of the Ising model on the Shastry-
Sutherland lattice using a tensor renormalization group
approach,41 with which they access larger system sizes and
lower temperatures. Their results are quantitatively consis-
tent with our findings of the presence of a 1/3 plateau and the
absence of a 1/2 plateau in the Ising limit of our model.
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